If it's not what You are looking for type in the equation solver your own equation and let us solve it.
36000=4x^2
We move all terms to the left:
36000-(4x^2)=0
a = -4; b = 0; c = +36000;
Δ = b2-4ac
Δ = 02-4·(-4)·36000
Δ = 576000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{576000}=\sqrt{57600*10}=\sqrt{57600}*\sqrt{10}=240\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-240\sqrt{10}}{2*-4}=\frac{0-240\sqrt{10}}{-8} =-\frac{240\sqrt{10}}{-8} =-\frac{30\sqrt{10}}{-1} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+240\sqrt{10}}{2*-4}=\frac{0+240\sqrt{10}}{-8} =\frac{240\sqrt{10}}{-8} =\frac{30\sqrt{10}}{-1} $
| 2x-51=10-(2x-7) | | 4x8=A+6 | | n+14=9+8 | | 21-4x=5x-15 | | 12x1.2=14.4 | | 36=x/2+7 | | 2.7x-11.07=2.7 | | 10–6x=–104 | | 1/6x-18=(-30) | | 4.5(x)-12+2.5(x)=51 | | 35x-17-8x=12+27x-29 | | 5+3t=–13 | | y+9=7+8 | | 40-5p=15 | | 8x3=x+12. | | a=7a+20 | | -27=-3+4y | | 3^(4x+5)=81^(-3/4) | | 2^(2x+1)-9×2^(x)+4=0 | | 5x–10=2–2x+10(x–3 | | 8x+3(2x+1)=7’ | | Y=15+2.75x | | -9(2-5/3y)-10y=12 | | 20+2x=63 | | F(x)=8+7x | | –12−12q−10=19−12q | | 2(y+11)=–6 | | 60+8x-2=180 | | 3k-2/4=11k-21/1 | | 60+8x-2=360 | | 9u-1=62 | | 9u-1=63 |